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Аннотация. В данной работе динамика проникновения магнитного потока в 

сверхпроводниках в вязком режиме течения исследуется путем аналитического 

решения уравнения нелинейной диффузии для индукции магнитного поля. 

Предполагается, что приложенное внешнее поле параллельно поверхности образца. 

Точное решение нелинейного уравнения диффузии для магнитной индукции было 

получено с использованием хорошо известного метода масштабирования. 

Ключевые слова: сверхпроводники, магнитное поле, малые возмущения, 

критическое состояние . 

 

O’ta-o’tkazgichlarda nochiziqli diffuziya  hodisalarini o’rganish 

 Annotatsiya. Ushbu maqolada yopishqoq oqim rejimida magnit oqimning  dinamikasi 

magnit maydon induksiyasi uchun chiziqli bo'lmagan diffuziya tenglamasini analitik echish 

yo'li bilan o'rganilgan. Tashqi maydon namuna yuzasiga parallel deb hisoblangan. Magnit 

induksiyasi uchun nochiziqli diffuziya tenglamasi o’xshashlik tamoyiliga asoslanib topilgan. 

Kalit so'zlar : o’ta-o'tkazuvchilar, magnit maydon, oqim, diffuziya, kritir holat. 

 

Nonlinear diffusion in superconductors  

 Abstract. In this paper, the dynamics of magnetic flux penetration in a viscous flow 

regime is studied by analytically solving the nonlinear diffusion equation for the magnetic 

field induction. It was assumed that the applied external field is parallel to the sample surface. 

An exact solution of the nonlinear diffusion equation for the magnetic induction B(r, t)
r r

 has 

been obtained using a well-known scaling method.  

Key words: superconductors, magnetic field, small perturbations, critical state.   

           

INTRODUCTION 

The study of dynamics of the evolution of magnetic flux into a 

superconductor is an important problem of technical superconductivity. 

Mathematically, this problem can be formulated on the basis of a system of 

nonlinear evolutionary equations for the electromagnetic field, taking into 

account the relationship between the field and current in a superconductor [1]. In 

this paper, the dynamics of magnetic flux penetration in a viscous flow regime is 

studied by analytically solving the nonlinear diffusion equation for the magnetic 

field induction. It is assumed that the applied external field is parallel to the 

sample surface. An exact solution of the nonlinear diffusion equation for the 



magnetic induction B(r, t)
r r

 has been obtained using a well-known scaling method 

[2]. The problem is investigated within the framework of the macroscopic 

approach [3], in which all length scales exceed the distance between the flow 

lines; thus, a superconductor is considered as a homogeneous medium. It is 

shown that the velocity of propagation and the depth of penetration of the flux 

depend on the amplitude of the magnetic field on the surface of the 

superconductor, the critical current density, and the differential resistivity of the 

sample.  

MODEL OF VISCOUS FLUX FLOW REGIME  

Let us consider the regime of viscous flux flow, which can be represented 

as follows: if a transport current is passed through the superconductor, then the 

interaction of vortices with the current leads to the appearance of the Lorentz 

force acting on the vortex filament  
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where c is the speed of light, 0F is the quantum of the magnetic flux. Under the 

influence of the Lorentz force, the magnetic flux starts to move, which causes 

energy dissipation, as a result of which the superconductor passes into a resistive 

state, or the Shubnikov phase. If there is a strong connection between the 

magnetic flux (Abrikosov vortex lattice) and the metal lattice, then the vortex 

lattice moves when 
L pF Fі , where 

pF  is the pinning force. Thus, a viscous vortex 

flow regime is established in a superconductor. It follows from the definition of 

the pinning force that    
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where η  is the viscosity, v is the macroscopic velocity of the vortices. It is 

important that there is a functional connection between the velocity of vortices v 

and the change in the electric field E, which occurs when the magnetic flux 

moves. Indeed, consider the continuity equation for the flow of vortex filaments  
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(where n is the density of vortices under equilibrium conditions 
0B n= F ) and 

Maxwell's equation 
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From (2) and (3) equations follows a functional connection 



 

1 E
v ,

c B
=                                                   (5) 

which plays an important role in the derivation of the equation for the evolution 

of the magnetic field. The equation of state for a superconductor has the form  

 

c fj=j +σ E ,                                                (6) 

where 
f

f

1
σ =

r
is the differential conductivity of the sample. From (6) it follows 

that the current-voltage characteristic in the regime of viscous flow of vortices 

can be written in the form  

    

f cE=ρ (B)(j-j ).                                      (7) 

 

where c cj j (B,T)= . Below we obtain an equation that describes the distribution of 

the magnetic field induction, when there is a nonlinear dependence of the critical 

current on the magnetic field. Suppose the temperature of the superconductor is 

the same as the temperature of the cooling, i.e. we neglect the non-isothermality 

of the process, proceeding from the fact that the value of the diffusion coefficient 

provides a rapid equalization of the temperature gradient. Such efficient cooling 

takes place for composite superconductors. Under isothermal conditions, 

temperature can be considered as a parameter and, therefore, the relationship 

between magnetic induction, electric field and transport current is determined by 

the system of Maxwell's equations.    

 FORMULATION OF THE PROBLEM 

Bean [4] has proposed the critical state model which is successfully used 

to describe magnetic properties of type II superconductors. According to this 

model, the distribution of the magnetic flux density B(r, t)
r

 and the transport 

current density j(r, t)
r

  inside a superconductor is given by the equation 
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When the penetrated magnetic flux changes with time, an electric field E(r, t)
r

 is 

generated inside the sample according to Faraday’s law 
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In the flux flow regime the electric field E(r, t)
r

 induced by moving of vortices is 

related with the local current density j(r, t)
r

 by the nonlinear Ohm’s law 



 

E=ρj .                                          (10) 

In combining the relation (10) with Maxwell’s equation (8) and (9), we obtain a 

nonlinear diffusion equation for the magnetic flux induction B(r, t)
r

 in the 

following form 
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 .                             (11) 

Formally, this differential equation is simply a nonlinear diffusion equation with 

a diffusion coefficient depending on magnetic induction B. The parabolic type 

diffusion equation (11) allows to obtain a time and space distribution of the 

magnetic induction profile in a superconductor sample. It is evident that the 

space-time structure of solution of the diffusion equation (11) is determined by 

the characteristics of dependence of the differential resistivity  on the magnetic 

field induction B. Usually, in real experimental situation [5], the differential 

resistivity (B)r   grows with an increase of magnetic field induction 
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where 
n  is the differential resistivity in the normal state;   is the viscosity 

coefficient, 0

c

2e
F =

h
 is the magnetic flux quantum, 

C2B  is the upper critical field 

of superconductor [5]. In the case, when the differential resistivity  is a linear 

function of the magnetic field induction B an exact solution of the diffusion 

equation (11) can be easily obtained by using the well-known scaling methods 

[2]. For the complex dependence of (B) it can be use by empirical power-law 

dependence n(B) Br » , where n is the positive constant parameter. 

BASIC EQUATIONS 

Now, we formulate the general equation governing the dynamics of the 

magnetic field induction in a superconductor sample. We study the evolution of 

the magnetic penetration process in a simple geometry - superconducting semi-

infinitive sample x>0. We assume that the external magnetic field induction eB
r

 

is parallel to the z-axis. When the magnetic field with the flux density eB (t)
r

 is 

applied in the direction of the z-axis, the transport current j(r, t)
r

 and the electric 

field E(r, t)
r

 are induced inside the slab along the y-axis. For this geometry, the 

spatial and temporal evolution of magnetic field induction B(r, t)
r

is described by 

the following nonlinear diffusion equation in the generalized dimensionless form 
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where we have introduced the dimensionless parameters and variables 
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penetration depth; 
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
    is the relaxation diffusion time; q is the positive 

constant parameter. The diffusion equation (13) can be integrated analytically 

subject to appropriate initial and boundary conditions in the center of the sample 

and on the sample’s edges. We consider the case, when the magnetic field 

applied to sample increases with time according to a power law with the 

exponent of > 0 
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Boundary condition (14) is equivalent to a linear increase in the magnetic field 

with time, which corresponds to a real experimental situation [5]. As can be 

easily seen that the case =0 describes a constant applied magnetic field at the 

surface of the sample, while the case =1 corresponds to linearly increasing 

applied field, respectively. The other boundary condition follows from the 

continuity of the flux 

at the free boundary px=x  

 

pb(x , t)=0,                                                    (15) 

where xp is the dimensionless position of the front of the magnetic  field. The 

flux conservation condition for the magnetic field induction can be formulated in 

the following integral form 

b(x, 0)dx=1.                                                 (16) 

It should be noted that the nonlinear diffusion equation (13), completed by the 

boundary conditions for magnetic induction, totally determines the problem of 

the space-time distribution of the magnetic flux penetration into superconductor 

sample in the flux flow regime with a power-law dependence of differential 

resistivity on the magnetic field induction. Solution of this equation gives a 

complete description of the time and space evolution of the magnetic flux in a 

sample. 

 SCALING SOLUTION 

In the following analysis we derive an evolution equation for the magnetic 

induction profile and formulate a similarity solution for the b(x, t) . As can be 



shown that the nonlinear diffusion equation (13) can be solved exactly using well 

known scaling methods [2, 6]. At long times we present a solution of the 

nonlinear diffusion equation for the magnetic induction (13) in the following 

scaling form 
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The similarity exponents   and β are of primary physical importance, since the 

parameter  represents the rate of decay of the magnetic induction b(x, t), while 

the parameter β is the rate of spread of the space distribution as time goes on. 

Inserting this scaling form into differential equation (13) and comparing powers 

of t in all terms, we get the following relationship for the exponents  and β 
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Using the condition of the flux conservation (16) we obtain 
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which suggests the existence of self-similar solutions in the form 
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Substituting this scaling solution (20) into the governing equation (13) yields an 

ordinary differential equation for the scaling function f(z) in the form 
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The boundary conditions for the function f(z) now become 

 

0f (0) 1, f (z ) 0.                                                 (22) 

The above equation (21), depending on the initial and the boundary conditions 

describes a scaling—like behavior magnetic flux front with a time—dependent 

velocity in the sample. After a further integration and applying the boundary 

conditions (22) we get the following solution of the problem 
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The position of the front 0z  can now be found by substituting the solution (23) 

into the integral condition (16) and it is given by 
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It is convenient to write the self-similar solution (23) in terms of a primitive 

variables, as 

 
1/(n+q-1)

(1+q)

0

p

x
b(x,t)=b 1-

x

  
  

    
,                                (24) 

where                
q/(n+q-1)

1/q
(q+1)/q

-1/(n+2q) 0
0

zn+q-1
b (0,t)=t

1+q n+2q

  
  
   

. 

  

The profile of the the normalized flux density b(x, t) is shown schematically in 

figure 1. 

 

 
 

This solution describes the propagation of the magnetic field into the sample, the 

magnetic induction being localized in the domain between the surface x=0 and 

Fig.1. The profile of the distribution of the normalized flux density b(x, t) at different times 

t=0.1, 0.2 for n=1.  

 



the flux front px . This solution is positive in the plane 2 2

px x  and is zero outside 

of it. Note, that only the x > 0 and t > 0 quarter of the plane is presented, because 

of it has physical relevance. The penetrating flux front position px x(t) as a 

function 

of time can be described by the relation 
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The velocity of the magnetic flux front decreases rapidly as the magnetic flux 

propagates (Fig2). 
(2q+n-1)
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P
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The spatial and temporal profiles of magnetic flux penetration in the 

sample depends on the set of three independent parameters, n, q and . It is of 

interest to consider the nonlinear diffusion equation for the magnetic induction 

for different values of the exponents n, q and . For a given parameter set n, q 

and  the form of the scaling function f(z) can be obtained by solving the 

nonlinear diffusion equation (13) analytically by a self-similar technique. We 

solve the nonlinear diffusion equation analytically to provide expressions for the 

time-space evolution of the magnetic induction for different values of exponents 

n, q and . Next, we analyze the effect of different values of exponents on the 

shape of the magnetic flux front in the sample. Varying the parameters of the 

equation, we may observe a various shapes of the magnetic flux front in the 

sample. As can be shown that different values exponents n and q generate 

different space–time magnetic flux fronts. Below we consider a few more 

practically relevant examples for which the magnetic flux front has a different 

shape depending on the different values of exponents n and q. 

Fig.2. The profile of the magnetic flux front velocity at different values of n=3, 7, 

11.  
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Let us first consider the most interesting case q=1. In this particular case 

the spatial and temporal evolution of the magnetic flux induction is totally 

determined by the parameters n and . In the following analysis we derive an 

evolution equation for the magnetic induction profile and apply the scalings of 

the previous section to formulate a similarity solution for the b(x, t). For this 

particular case nonlinear diffusion equation (13) can be solved exactly using the 

scaling method. Thus, based on the scalings described in the previous section, we 

get the following relation for the exponents 

1
α=β=-

n+2
. 

The last relation suggests the existence of solution to equation (13) of the form 
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Substituting the similarity solution (27) into the governing equation (13) yields 

an ordinary differential equation for the scaling function f(z) 
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Integrating the equation (28) by parts and applying the boundary conditions (16) 

give 
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which is the explicit form of the similarity solution, which we have been seeking. 

The position of the front 0z  can now be found by substituting the last solution 

into the integral condition (16), so we have 
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By using the following transformation 
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and after integrating we obtain 
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It is convenient to write the self-similar solution (29) in terms of a primitive 

variables, as 
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where 
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Equation (31) constitutes an exact solution of the nonlinear flux diffusion 

equation for the situation, when q=1. As can be seen the solution (31) describes 

the propagation of the flux profile inside the sample for the case q=1 is well. The 

profile of the the normalized flux density b(x, t) is shown schematically in figure 

3. 

 

 
 

 

The penetrating flux front position px x (t)= as a function of time can be 

described by the relation 
1

(n+2)

P 0x =z t . 

The velocity of penetration of a magnetic flux into a superconductor can be 

naturally determined from the last relation 

 

Fig. 3. The distribution of the normalized flux density b(x, t) at different times t=0.1, 0.2 for 

n=1, q=1.  
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Interestingly, the normalized current density j(x, t) in the region, po x x< < can be 

presented using the equations 

 

1 db
j(x, t)

c dx
  .                                        (33) 

After a simple analytical calculation, we can easily obtain the space and time 

profiles of the normalized current density j(x, t) .The space ant time evolution of 

the normalised current density is shown in Fig. 5 for the particular cases  n = 1, 

3.  

 

 

 
 

Note that a similar problem was also studied in [7] in connection with the 

magnetic relaxation of a superconducting slab in the flux creep regime with 

power-law dependence of the electric field E on current density j. The authors of 

[7] showed that in the case of logarithmic barriers, the relaxation process leads to 

Fig 4. a) The profile of the velocity of the magnetic flux front at n = 1. 

b) The time evolution of the magnetic flux for n = 1 and q=1. 
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Fig.5. The space ant time evolution of the normalised current density  for  n = 1, 3. 

 



the self-organization of the system into the critical state. Assuming that the 

uniform magnetic induction B0 is induced by a constant magnetic field, they 

found an expression for the magnetic moment for the limiting cfse  n = 1. For 

example, it was shown that the pinning potential, which depends on the 

logarithmic dependence on the current density, leads to a similar nonlinear 

diffusion equation for the space-time evolution of the flux density with a power-

law current-voltage characteristic [7].  

          CONCLUSION 

In this paper, the dynamics of magnetic flux penetration in a viscous flow 

regime is studied by analytically solving the nonlinear diffusion equation for the 

magnetic field induction, assuming that the applied external field is parallel to 

the sample surface. An exact solution of the nonlinear diffusion equation for the 

magnetic induction B(r, t)
r r

 has been obtained using a well-known scaling 

method. It was shown that the spatial and temporal profiles of magnetic flux 

penetration in the sample depends on the set of three independent parameters, n, 

q and . For a given parameter set n, q and  the form of the scaling function 

f(z) is obtained by solving the nonlinear diffusion equation analytically by a self-

similar technique. Next, we have analyzed the effect of different values of 

exponents on the shape of the magnetic flux front in the sample. Varying the 

parameters of the equation, we may observe a various shapes of the magnetic 

flux front in the sample. It was shown that different values exponents n and q 

generate different space–time magnetic flux fronts.  

 

        REFERENCES 

[1]. R.G. Mints and A.L. Rakhmanov. Instabilities in Superconductors, 

Moscow, Nauka, 1984.  260 p. 

[2]. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdjumov, and A. S. 

Stepanenko, Peaking Regimes for Quasilinear Parabolic Equations, Nauka, 

Moskow, 1987. 362 p. 

[3]. R.G. Mints, and A.L. Rakhmanov, Rev. Mod. Phys. 53(1987) 551-559. 

[4]. C. P. Bean, Rev. Mod. Phys., 36(1964) 250-253. 

[5]. A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors, 

Taylor and Francis, London, 1972. 313-343 p. 

[6]. V.V. Bryksin, S.N. Dorogovstev.  Physica C  215 (1993) 345-351. 

 

 


