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O’ta-o’tkazgichlarda nochiziqli diffuziya hodisalarini o’rganish
Annotatsiya. Ushbu magolada yopishgoq ogim rejimida magnit ogimning dinamikasi
magnit maydon induksiyasi uchun chizigli bo'lmagan diffuziya tenglamasini analitik echish
yo'li bilan o'rganilgan. Tashgi maydon namuna yuzasiga parallel deb hisoblangan. Magnit
induksiyasi uchun nochiziqli diffuziya tenglamasi o xshashlik tamoyiliga asoslanib topilgan.
Kalit so’zlar : o ta-0'tkazuvchilar, magnit maydon, oqim, diffuziya, kritir holat.

Nonlinear diffusion in superconductors
Abstract. In this paper, the dynamics of magnetic flux penetration in a viscous flow
regime is studied by analytically solving the nonlinear diffusion equation for the magnetic
field induction. It was assumed that the applied external field is parallel to the sample surface.
LT
An exact solution of the nonlinear diffusion equation for the magnetic induction B(r,t) has

been obtained using a well-known scaling method.
Key words: superconductors, magnetic field, small perturbations, critical state.

INTRODUCTION

The study of dynamics of the evolution of magnetic flux into a
superconductor is an important problem of technical superconductivity.
Mathematically, this problem can be formulated on the basis of a system of
nonlinear evolutionary equations for the electromagnetic field, taking into
account the relationship between the field and current in a superconductor [1]. In
this paper, the dynamics of magnetic flux penetration in a viscous flow regime is
studied by analytically solving the nonlinear diffusion equation for the magnetic
field induction. It is assumed that the applied external field is parallel to the
sample surface. An exact solution of the nonlinear diffusion equation for the



magnetic induction I'B(?,t) has been obtained using a well-known scaling method
[2]. The problem is investigated within the framework of the macroscopic
approach [3], in which all length scales exceed the distance between the flow
lines; thus, a superconductor is considered as a homogeneous medium. It is
shown that the velocity of propagation and the depth of penetration of the flux
depend on the amplitude of the magnetic field on the surface of the
superconductor, the critical current density, and the differential resistivity of the
sample.

MODEL OF VISCOUS FLUX FLOW REGIME

Let us consider the regime of viscous flux flow, which can be represented
as follows: if a transport current is passed through the superconductor, then the
interaction of vortices with the current leads to the appearance of the Lorentz
force acting on the vortex filament
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where c is the speed of light, F,is the quantum of the magnetic flux. Under the

influence of the Lorentz force, the magnetic flux starts to move, which causes
energy dissipation, as a result of which the superconductor passes into a resistive
state, or the Shubnikov phase. If there is a strong connection between the
magnetic flux (Abrikosov vortex lattice) and the metal lattice, then the vortex
lattice moves when F i F, where F, is the pinning force. Thus, a viscous vortex
flow regime is established in a superconductor. It follows from the definition of
the pinning force that
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where n is the viscosity, v is the macroscopic velocity of the vortices. It is

important that there is a functional connection between the velocity of vortices v
and the change in the electric field E, which occurs when the magnetic flux
moves. Indeed, consider the continuity equation for the flow of vortex filaments
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(where n is the density of vortices under equilibrium conditions B= nF,) and
Maxwell's equation

2 Lo @

From (2) and (3) equations follows a functional connection
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which plays an important role in the derivation of the equation for the evolution

of the magnetic field. The equation of state for a superconductor has the form

=) *toE, (6)
where cfzriis the differential conductivity of the sample. From (6) it follows
f
that the current-voltage characteristic in the regime of viscous flow of vortices
can be written in the form

E=p; (B)(-J.)- (7)

where j. = J.(B, T). Below we obtain an equation that describes the distribution of

the magnetic field induction, when there is a nonlinear dependence of the critical
current on the magnetic field. Suppose the temperature of the superconductor is
the same as the temperature of the cooling, i.e. we neglect the non-isothermality
of the process, proceeding from the fact that the value of the diffusion coefficient
provides a rapid equalization of the temperature gradient. Such efficient cooling
takes place for composite superconductors. Under isothermal conditions,
temperature can be considered as a parameter and, therefore, the relationship
between magnetic induction, electric field and transport current is determined by
the system of Maxwell's equations.

FORMULATION OF THE PROBLEM

Bean [4] has proposed the critical state model which is successfully used
to describe magnetic properties of type Il superconductors. According to this

model, the distribution of the magnetic flux density I'3(r,t) and the transport
current density Ij(r,t) inside a superconductor is given by the equation

rotB = Uo_j : (8)
When the penetrated magnetic flux changes with time, an electric field I'E(r,t) IS
generated inside the sample according to Faraday’s law
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In the flux flow regime the electric field I'E(r,t) induced by moving of vortices is
related with the local current density 'j(r, t) by the nonlinear Ohm’s law



E=pj. (10)
In combining the relation (10) with Maxwell’s equation (8) and (9), we obtain a
nonlinear diffusion equation for the magnetic flux induction I'3(r,t) in the
following form
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Formally, this differential equation is simply a nonlinear diffusion equation with
a diffusion coefficient depending on magnetic induction B. The parabolic type
diffusion equation (11) allows to obtain a time and space distribution of the
magnetic induction profile in a superconductor sample. It is evident that the
space-time structure of solution of the diffusion equation (11) is determined by
the characteristics of dependence of the differential resistivity p on the magnetic
field induction B. Usually, in real experimental situation [5], the differential
resistivity r(B) grows with an increase of magnetic field induction
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where p_is the differential resistivity in the normal state; n is the viscosity
coefficient, F, = he Is the magnetic flux quantum, B, is the upper critical field
2e

of superconductor [5]. In the case, when the differential resistivity p is a linear
function of the magnetic field induction B an exact solution of the diffusion
equation (11) can be easily obtained by using the well-known scaling methods
[2]. For the complex dependence of p(B) it can be use by empirical power-law
dependence r(B)» B", where n is the positive constant parameter.

BASIC EQUATIONS

Now, we formulate the general equation governing the dynamics of the
magnetic field induction in a superconductor sample. We study the evolution of
the magnetic penetration process in a simple geometry - superconducting semi-

infinitive sample x>0. We assume that the external magnetic field induction |'3e
is parallel to the z-axis. When the magnetic field with the flux density I'Be(t) IS
applied in the direction of the z-axis, the transport current Ij(r,t) and the electric
field I'E(r,t) are induced inside the slab along the y-axis. For this geometry, the

spatial and temporal evolution of magnetic field induction I'3(r,t) is described by
the following nonlinear diffusion equation in the generalized dimensionless form
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where we have introduced the dimensionless parameters and variables
b:E’ szmx, t:i, j:‘i’ Be:uojovo'[_; Xy = Be
Be Be TO .]0 pOJc
jg“o
2

constant parameter. The diffusion equation (13) can be integrated analytically
subject to appropriate initial and boundary conditions in the center of the sample
and on the sample’s edges. We consider the case, when the magnetic field
applied to sample increases with time according to a power law with the
exponent of a> 0

iIs the magnetic field

penetration depth; t=p, Is the relaxation diffusion time; q is the positive

b(0, t)=b,t". (14)
Boundary condition (14) is equivalent to a linear increase in the magnetic field
with time, which corresponds to a real experimental situation [5]. As can be
easily seen that the case =0 describes a constant applied magnetic field at the
surface of the sample, while the case a=1 corresponds to linearly increasing
applied field, respectively. The other boundary condition follows from the
continuity of the flux
at the free boundary x=x,

b(x,,1)=0, (15)
where X, is the dimensionless position of the front of the magnetic field. The

flux conservation condition for the magnetic field induction can be formulated in
the following integral form

[blx, 0)dx=1 (16)

It should be noted that the nonlinear diffusion equation (13), completed by the
boundary conditions for magnetic induction, totally determines the problem of
the space-time distribution of the magnetic flux penetration into superconductor
sample in the flux flow regime with a power-law dependence of differential
resistivity on the magnetic field induction. Solution of this equation gives a
complete description of the time and space evolution of the magnetic flux in a
sample.

SCALING SOLUTION

In the following analysis we derive an evolution equation for the magnetic
induction profile and formulate a similarity solution for the b(x,t). As can be



shown that the nonlinear diffusion equation (13) can be solved exactly using well
known scaling methods [2, 6]. At long times we present a solution of the
nonlinear diffusion equation for the magnetic induction (13) in the following
scaling form

[b(x, tyax=t’f [tﬁﬁj . (17)

The similarity exponents oo and B are of primary physical importance, since the
parameter o, represents the rate of decay of the magnetic induction b(x, t), while
the parameter [ is the rate of spread of the space distribution as time goes on.
Inserting this scaling form into differential equation (13) and comparing powers
of tin all terms, we get the following relationship for the exponents o and 3

a+1=o(n+q)+pA+q). (18)
Using the condition of the flux conservation (16) we obtain

1
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which suggests the existence of self-similar solutions in the form

1
bz) =t "f(z), z=—2—. (20)
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Substituting this scaling solution (20) into the governing equation (13) yields an

ordinary differential equation for the scaling function f(z) in the form
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The boundary conditions for the function f(z) now become

f(0)=1 f(z,)=0. (22)
The above equation (21), depending on the initial and the boundary conditions
describes a scaling—Ilike behavior magnetic flux front with a time—dependent
velocity in the sample. After a further integration and applying the boundary
conditions (22) we get the following solution of the problem

1+4q 1/ (n+g-1)
f(z)=f(zo){1-(25) ] : (23)

0
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The position of the front z, can now be found by substituting the solution (23)
into the integral condition (16) and it is given by
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It is convenient to write the self-similar solution (23) in terms of a primitive
variables, as

22 M) {
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b(x,t)=by 1[%] , (24)
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where
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The profile of the the normalized flux density b(x, t) is shown schematically in
figure 1.

Fig.1. The profile of the distribution of the normalized flux density b(x, t) at different times
t=0.1, 0.2 for n=1.

This solution describes the propagation of the magnetic field into the sample, the
magnetic induction being localized in the domain between the surface x=0 and



the flux front x, . This solution is positive in the plane x; >x? and is zero outside

of it. Note, that only the x > 0 and t > 0 quarter of the plane is presented, because
of it has physical relevance. The penetrating flux front position x =x(t)as a

function
of time can be described by the relation

Xp = f . (25)
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Fig.2. The profile of the magnetic flux front velocity at different values of n=3, 7,
11.

The velocity of the magnetic flux front decreases rapidly as the magnetic flux
propagates (Fig2).
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The spatial and temporal profiles of magnetic flux penetration in the
sample depends on the set of three independent parameters, n, q and o. It is of
interest to consider the nonlinear diffusion equation for the magnetic induction
for different values of the exponents n, q and a. For a given parameter set n, q
and o the form of the scaling function f(z) can be obtained by solving the
nonlinear diffusion equation (13) analytically by a self-similar technique. We
solve the nonlinear diffusion equation analytically to provide expressions for the
time-space evolution of the magnetic induction for different values of exponents
n, q and a. Next, we analyze the effect of different values of exponents on the
shape of the magnetic flux front in the sample. Varying the parameters of the
equation, we may observe a various shapes of the magnetic flux front in the
sample. As can be shown that different values exponents n and g generate
different space—time magnetic flux fronts. Below we consider a few more
practically relevant examples for which the magnetic flux front has a different
shape depending on the different values of exponents n and g.



Let us first consider the most interesting case g=1. In this particular case
the spatial and temporal evolution of the magnetic flux induction is totally
determined by the parameters n and o. In the following analysis we derive an
evolution equation for the magnetic induction profile and apply the scalings of
the previous section to formulate a similarity solution for the b(x, t). For this
particular case nonlinear diffusion equation (13) can be solved exactly using the
scaling method. Thus, based on the scalings described in the previous section, we
get the following relation for the exponents

1
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The last relation suggests the existence of solution to equation (13) of the form

1

b(x, )=t "2f(z);  z=xt ™2, (27)
Substituting the similarity solution (27) into the governing equation (13) yields
an ordinary differential equation for the scaling function f(z)

d[qndf] o0
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Integrating the equation (28) by parts and applying the boundary conditions (16)
give

1/n

n , 1/n 2 2
N

which is the explicit form of the similarity solution, which we have been seeking.
The position of the front z, can now be found by substituting the last solution

into the integral condition (16), so we have

1/n

I

By using the following transformation

z=z,SINo®

and after integrating we obtain



1/n F(S-l-lj
Z(n+2)/n|: n } _ 2 \2 n)

{ = :
2(n+2) N r(“ij
It is convenient to write the self-similar solution (29) in terms of a primitive
variables, as
2 1/n
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where

1/n 1
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Equation (31) constitutes an exact solution of the nonlinear flux diffusion
equation for the situation, when g=1. As can be seen the solution (31) describes
the propagation of the flux profile inside the sample for the case g=1 is well. The
profile of the the normalized flux density b(x, t) is shown schematically in figure
3.

Fig. 3. The distribution of the normalized flux density b(x, t) at different times t=0.1, 0.2 for
n=1, g=1.

The penetrating flux front position x= x (t)as a function of time can be
described by the relation

1
X, =zt
The velocity of penetration of a magnetic flux into a superconductor can be
naturally determined from the last relation
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Fig 4. a) The profile of the velocity of the magnetic flux frontatn = 1.
b) The time evolution of the magnetic flux for n =1 and q=1.

Interestingly, the normalized current density j(x,t)in the region, o< x < x_can be
presented using the equations

. 1db

j(x,t) = i (33)
After a simple analytical calculation, we can easily obtain the space and time
profiles of the normalized current density j(x,t).The space ant time evolution of
the normalised current density is shown in Fig. 5 for the particular cases n =1,

3.

Fig.5. The space ant time evolution of the normalised current density Kx,1) for n=1,3.

Note that a similar problem was also studied in [7] in connection with the
magnetic relaxation of a superconducting slab in the flux creep regime with
power-law dependence of the electric field E on current density j. The authors of
[7] showed that in the case of logarithmic barriers, the relaxation process leads to



the self-organization of the system into the critical state. Assuming that the
uniform magnetic induction By is induced by a constant magnetic field, they
found an expression for the magnetic moment for the limiting cfse n = 1. For
example, it was shown that the pinning potential, which depends on the
logarithmic dependence on the current density, leads to a similar nonlinear
diffusion equation for the space-time evolution of the flux density with a power-
law current-voltage characteristic [7].

CONCLUSION

In this paper, the dynamics of magnetic flux penetration in a viscous flow
regime is studied by analytically solving the nonlinear diffusion equation for the
magnetic field induction, assuming that the applied external field is parallel to
the sample surface. An exact solution of the nonlinear diffusion equation for the

magnetic induction I'B(F,t) has been obtained using a well-known scaling

method. It was shown that the spatial and temporal profiles of magnetic flux
penetration in the sample depends on the set of three independent parameters, n,
q and a. For a given parameter set n, g and o the form of the scaling function
f(z) is obtained by solving the nonlinear diffusion equation analytically by a self-
similar technique. Next, we have analyzed the effect of different values of
exponents on the shape of the magnetic flux front in the sample. Varying the
parameters of the equation, we may observe a various shapes of the magnetic
flux front in the sample. It was shown that different values exponents n and g
generate different space—time magnetic flux fronts.
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